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The r e su l t s  of an exper imenta l  investigation into the t rans i t ion of a descending film of wa t e r  
into the turbulent  mode of flow a r e  p resen ted ,  the fi lm being accompanied  by a s t r e a m  of gas ,  
e i ther  of the condensing va r i e ty  (water  vapor) o r  of the noncondensing kind (air).  

In o rde r  to calcula te  the heat  and m a s s  t r a n s f e r  taking place in var ious  f i lm- type  devices ,  it is e s -  
sent ial  to know the l imi t s  of s tabi l i ty  of the severa l  poss ib le  modes of flow of a descending film of liquid: 
s t r i c t l y  l amina r ,  l a m i n a r - w a v e  motion, o r  turbulent .  The resu l t s  of some exper imenta l  invest igat ions 
into the hydrodynamics  of a descending f i lm in contact with s ta t ionary  a i r  were  p resen ted  in [1]. The 
Reynolds numbers  cor responding  to t rans i t ion f rom the s t r i c t ly  l a m i n a r  to l amina r -wave  motion or  f rom 
the l a t t e r  to turbulent  flow were  de te rmined .  Other published data [2, 3] indicate that,  when a descending 
f i lm is acted upon by a eounterflow of noncondensing gas,  the l imi ts  of s tabi l i ty  of the s t r i c t ly  l amina r  and 
l a m i n a r - w a v e  fo rms  of flow a re  g rea t ly  reduced.  However ,  as yet  the t ransi t ion to turbulent  flow in de-  
scending f i lms with a flow of assoc ia ted  gas  pass ing  around them has never  been studied. Also of special  
in te res t  f rom the point of view of condensation devices  a re  the l imi t s  of s tabi l i ty  of the var ious  modes of 
flow of a descending fi lm during the condensation of moving vapor .  

Fig. 1. A r r a n g e m e n t  of the 
pr inc ipa l  pa r t s  of the expe r i -  
mental  appara tus .  
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Fig. 2. Dependence of the t r a n s i -  
t ional Reynolds number  on the ra te  
of gas  flow (W, m / s ee ) :  1) without 
any gas  phase flowing around it; 2) 
gas  flow and condensation; 3) gas  
flow without condensation.  

We accordingly se t  up a special  exper imenta l  appara tus  
to study the t rans i t ion to turbulent  flow in descending wa te r  f i lms 
with flows of both noncondensing gas  (air) and condensing wa te r  
vapor  pass ing around them.  We shall  now desc r ibe  the e x p e r i -  
mental  appara tus  and the method of conducting the exper iments  
and a lso  set  out the resu l t s  of this invest igation.  

A descending wa te r  fi lm was c rea ted  on the outer  sur face  
of a ver t ica l  a luminum tube 1 (external  d i ame te r  10 m m ,  length 
of the pa r t  covered  with the f i lm 250 mm).  A flow of dis t i l led 
w a t e r  regulated f rom outside with a value passed  through the 
channel 3 into the annular  groove 11 encompass ing  the tube 1. 
Then the dist i l led wa te r  passed  into the gap between the tube 1 
and the bushing 4. The gap in question compr i sed  a se t  of 
para l le l  cap i l l a ry  channels mil led on the outer  su r face  of the 
tube 1 and ensured the crea t ion  of a descending fi lm uniform 
over  the tube p e r i m e t e r .  Air  o r  water  vapor  passed  through 
the side tubes 5 into the unit. Pass ing  through longitudinal 
pa ra l l e l  channels 6 (channel depth 5 m m ,  max imum width 4 m m ,  

length 50 mm) ,  in which any poss ib le  eddying was el iminated,  the gas  flow passed  into an annular  gap be -  
tween the fi lm flowing down the tube 1 and the g lass  tube 2, with an internal  d i ame te r  of 22 m m .  The gas 
flow was led out through the side tubes 7. In the upper  pa r t  of the tube 1 was  an ape r tu r e  8 with a d i ame te r  
of 0.1 m m  for  feeding an e x t r e m e l y  fine jet  of coloring liquid into the fi lm through the cap i l l a ry  9. On 
pass ing  w a t e r  vapor  into the appara tus  the tube 1 was  cooled by pass ing t a p - w a t e r  through it; the moving 
vapor  then condensed on the sur face  of the f i lm, accompanied  by specif ic  the rma l  fluxes of the o rde r  of 
2 �9 105 W / m  2. When the moving vapor  was being condensed, the g lass  tube 2 was heated f rom the outside 
in o rde r  to p reven t  blocking. 

Under this appara tus  we  measu red  the flow of liquid in the descending fi lm (by weighing),  the flow 
ra te  of injected a i r  (with a double diaphragm),  the flow ra te  of injected vapor  (by weighing a f t e r  comple te  
condensation in an auxi l ia ry  condenser) ,  and the t e m p e r a t u r e  of the injected dist i l led wate r .  The uni for -  
m i ty  of the descending f i lm around the tube p e r i m e t e r  was  ver i f ied  by measur ing  the fi lm thickness  on dif -  
f e ren t  s ides of the tube in the s a m e  horizontal  sect ion,  using the e lec t r i c  probe 10. The Reynolds n u m b e r  
of the f i lm was  de te rmined  f rom the equation 

Re = 4V/v. (1) 

The t rans i t ion f rom l a m i n a r - w a v e  flow to turbulent  flow was studied by visual  observat ion  of the 
s tate  of the fine jet  of injected coloring liquid. Fo r  low r a t e s  of flow of the liquid in the f i lm this jet  suf -  
fe red  no d i spers ion  and was  c l ea r ly  vis ible  along the whole length of the tube. On increas ing the ra te  of 
flow a condition developed in which the jet  s t a r t ed  becoming diffuse in the lower  pa r t  of the tube. On fu r the r  
increas ing  the ra te  of flow the boundary of the diffuse region approached the ape r tu r e  8. All this suggested 
that the point at which the colored j e t  became  diffuse cor responded  to the point of t ransi t ion into the tu rbu-  
lent  mode of flow in the fi lm of descending liquid. 

In o rde r  to ver i fy  the method we f i r s t  made some exper iments  with a s t a t ionary  gas  phase  (without 
injecting a i r  o r  vapor) .  In these  exper imen t s  we obtained s tably reproducib le  Reynolds numbers  c o r r e s -  
ponding to the t rans i t ion into the turbulent  fo rm of flow in the f i lm. This value of the Reynolds number  
according  to our  exper imenta l  r e su l t s  equalled 1600 ( e r r o r  no g r e a t e r  than • 8%), in good a g r e e m e n t  with 
e a r l i e r  data [1]. * Subsequentlywe s ta r t ed  exper iments  involving the injection of a i r  and w a v e r  vapor  (with 
condensation on the film). 

F igure  2 shows the t rans i t ional  Reynolds numbers  as a function of the veloci t ies  of the a i r  flow and 
the condensing vapor .  The curves  r e f e r  to a c ros s  sect ion at 150 m m  f rom the beginning of the f i lm. 

We see  f rom the curves  p resen ted  that  with increas ing  ra te  of gas  flow the s tabi l i ty  of the l a m i n a r -  
wave motion of the descending film d e c r e a s e s ,  and this leads to a fall in the Reynolds number  c o r r e s p o n d -  
ing to the t rans i t ion  into the turbulent  mode of flow. However ,  the extent to which the s tabi l i ty  is reduced 

�9 In [i] the Reynolds number  was de te rmined  f rom the equation Re = V/~.  The value of the t rans i t ional  
Reynolds number  es tabl ished in these  exper imen t s  was 400, which on r e f e r r i n g  the determinat ion to Eq. 
(1) gives 1600. 
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with increas ing  veloci ty  of t hegns  phase  is subs tant ia l ly  affected by the condensation p r o c e s s .  We see  f rom 
the curves  that,  whereas  in the p r e s ence  of an a i r  flow ("dry"  flow) a t  a ve loci ty  of 36 m / s e c  the t ransi t ional  
Reynolds number  fal ls  to 320, in the case  of the condensation of vapor  moving at  42 m / s e c  it only fails to 
t450. Even fo r  the m a x i m u m  veloci t ies  of the vapor  (up to 80 m / s e e )  the t rans i t ional  Reynolds number  
does not fall  as  f a r  as 1000. It  should be noted that  these  r e su l t s  (for the condensation of moving vapor) 
ag ree  sa t i s f ac to r i ly  with expe r imen t s  on heat  t r a n s f e r  [4] in which the t rans i t ion  to the turbulent  fo rm of 
flow in a condensate  f i lm is re f lec ted  by a change in the h e a t - t r a n s f e r  law. 

As a whole the resu l t s  obtained indicate cons iderable  d i f fe rences  in the hydrodynamic  interact ions 
between the gas  phase  and the liquid f i lm for  the two cases  in question: "dry" flow, and flow with condensa-  
tion. The condensat ion p roce s s  not only g rea t ly  a l t e r s  the laws of in terphase  fr ic t ion,  as indicated in [5, 
6], but a lso  l a rge ly  de t e rmines  the c h a r a c t e r  of the flow in the fi lm of condensate.  
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N O T A T I O N  

is the Reynolds number;  
is the volume flow of liquid in the f i lm pe r  unit length of the tube p e r i m e t e r ;  
is the k inemat ic  v i scos i ty  of the liquid; 
is the veloci ty  of the gas  and vapor  flows. 
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